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In the theory of ideal plasticity the finding of closed particular solu- 
tions is undoubtedly of ipterest. Several such solutions for a case of 

plane problem have been pointed out and investigated by: L. Prandtl; A. 
Nadai; H. Hencky; C. Caratheodory and E. Schmidt; S. L. Sobolev; S.G. 
Yikhlin; V.V. Sokolovskfi; It. Hill and others. These solutions are avail- 
able, for exaaple in monographs [l-3 1. 

This paper oonsiders certain particular SOfUtiOnS of the aXiSYmmetriCa1 
problem in the theory of ideal plasticity under Mises and Tresca-St. 
Venant plasticity conditions and the associated laws of plastic flow. 

Note that detailed investigations of particular solutions of the axi- 
symmetrical problem which describe plastic stressed state in a converging 
channel are credited to Sokolovskii [ 1 1 and to Shield [ 4.5 1 . 

1. Following the Mises conditions of plasticity, the equations for the 
axisymnetrical problem in cylindrical coordinates appear as 

(1.3) 
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where all the quantities are assumed to be dimensionless. Components of 

the stress are referred to a constant which is on the right-hand side of 

the plasticity condition; coordinates are referred to some characteristic 

length; and the displacement velocities are referred to some character- 

istic velocity. 

I. lhe simplest particular solution may be indicated for r pz = w= 0. 

This corresponds to a very well-explored axisymnetrical state of stress 
for plane strain. 

II. As shown by Hill 13 1 the components of stress and displacement 

velocity, which satisfy relationships (1.1) to (1.31, may be given in the 
form: 

rpz = p, Gp = So = --2z+c,, Gz = - 25 - IL1 1/3(1-_+ ci (1.4) 

where C1, C2 are constants and p1 = sign (o 
P 

- oz). 

Hill applied this solution for the investigation of the squeezing of 

plastic material from contractable cylindrical housing with rough surface. 

We observed that this solution was analogous to a cycloidal solution 
introduced by Prandtl for a mass compressed between rough plates. 

III. One may give a solution, also analogous to Prandtl’s cycloidal 

solution, which corresponds to compression of a plastic material into a 

diverging rough cylindrical tube. In fact, put 

Ihen 

and the 

From 

I 1 
Tpz = -- 

P ’ 
u=--- 

P 

from relationships (1.3) it follows that 

(I.51 

Ji = + (Gp + Je) 

plasticity condition (1.2) will assm 

(SP - 30)” + 4& = 4 

equations (1.6) and (1.5) we obtain 
r- 

the form: 

(1.6) 

=P - 00 = 2112 v 1 - -$ ) p2 = sign (Q - se) (1.7) 

Substituting expression (1.7) into the first of equilibrium equations 

(l.l), we find 

Qp - +2 
bf 

1 --~~-lrrr(p+1/?“-11)]+f(z! (1.8) 
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From this it follows that 

ae = - 2rz ln (P + VP"- $1 + f(z) (I.91 

From the second of the equilibrium equations (1.11, and from (1.51, we 

find that 

Therefore, one should put f(z) = C, in relationships (1.8) and (1.9). 

obviously 

cTz=t*z v'l 
[ 

--$--2ln(p+i/pZ-- i)]+c, 

In order to find the displacement velocity w, we take the second and 

the fourth of the equations (1.3). Chi integration we obtain 

w=-2l.4 cos-1 $+c, 

IV. 'lhe most general analog of Prandtl's cycloidal solution 

synvnetrical problem appears to be a solution which contains as 

cases the solutions presented in I and III.Let 

TPt =?n,p+~, zz = n,p+ 4 

where ml, m2, nl, n2 are constants. 

'lhe first two equations (1.3) will be written in the form 

of an axi- 

particular 

(1.10) 

n2 
4 - p’ = )i(2Jp - ot) - ET& n1+ -$-=A(2Q-~,-Gp) 

from which it is easy to obtain 

(1.11) 

Substituting expression (1.11) into plasticity condition (1.21, we 

obtain 

(1.12) 

From (l.lO), (1.121, and from the first equation (1.11, determine 

From (1.101, and from the second equation of (1.11, we find that 

szz L= - 2m1s + Yl (P) (1.14) 
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Employing equations (l.ll)-(1.14), we find that 

3, = 

Having taken 

obtain 

& the other 

JSy comparing 

hand, from the incompressibility 

w= - 2n9 + 552 (P) 

expressions (1.15) and (1.16) we 

12(z) = 2n9 + G 

equation it follows that 

(1.16) 

find that 

The solution obtained corresponds to the pressing of a plastic 

- 2m,z + p2 c 3n,p - F P2 - (WP’ + m2)‘L 
- 4 + 3n# 

- 2p2n2 \ r/p” <~~p~n~p~z)2 $ + C, 

fli4 =-2mlz+C, 

a ratio of the second and the fourth equations (1.3), we 

w=6 
s 

~g dp 

P G$3 - CT* - q 
+ f‘2 (4 (1.15) 

cylindrical layer by rough coaxial cylindrical surfaces. Such a process 

of punching appears to be hypothetical, although if one investigates 

cylinders of sufficiently large radius, then the plastic material will be 

found in approximately the condition of being pressed by two parallel 

cylindrical surfaces. 

In further discussions it is convenient to go over to a system 

ordinates n*, y*, .z*; assuming the z* axis to be perpendicular to 

X+Y+ plane. 

of co- 

the 

Fig. 1. 

From the figure we have 

00, = R, AO, = hl, GO, = h,, AB = 2h, .x8 = z, y* = p - R 

We select the quantity h to represent the characteristic linear di- 
mension, preserve the notations for dimensionless quantities R, h,, h, 
and omit the stars for coordinates x8, y', z*. 

Let us suppose that on the surfaces the shear stress rxY assumes the 
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maximum values; then 

1121 (R + h,) + * = - 1, m,(z? -h,) + Ejj =1(1.17) 

'Ihe value of R will be determined from the condition 

m,R -j-% =O (1.18) 

From equations (1.17) and (1.18) we obtain 

1 R2 ml= - --, 
2 

m2= 2 R = _-$$ 
2 

(1.19) 

Assuming that the radius of the outer surface is decreasing with unit 

velocity, and the radius of the interior surface is increasing with the 

same velocity, we obtain analogously 

n,=---i 
2' n2= +R" (1.20) 

let us consider a case of sufficiently large radius R. Having assumed 

S = l/R, we neglect all the quantities which contain terms sf S* and 

higher. 

After denoting h, = 1 + 6,, h, = 1 - 6,, from (1.19) we find that 

6, = l/2 ah*. 

Simplifying relationships (l.ll)-(1.15), we obtain 

Relationships as given by Prandtl are obtained when 6 = 0, /.L = - 1. 

bations of slip lines are easily obtained by identifying them with the 

lines of action of maximum shear stresses. 

2. In employing Tresca-St. Venant's conditions of plasticity, we will 

confine ourselves to the consideration of a case when the plastic state 

of stress corresponds to an edge of the prism which interprets the Tresca- 

St. Venant condition of plasticity in the space of principal stresses. 
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In other words, we will presuppose that the conditions of complete plasti- 

city are satisfied. 

‘lhe validity of.this assumption is based on the development of complete 

solutions of problems. 

‘Ihe condition of plasticity will have the form 

$ ( Lzp - 3,)2 + zpz2 1, 08 = $ (op + +) + 1 (2.4) 

For determining the field of velocities there will be equations 

(2.2) 

Equations determining the plastic state of stress under conditions of 

complete plasticity are statically deteninate and belong to the hyper- 

bolic type. It is known that if a transformation of variables is performed 

JP = cti + sin 24, $2 = Q - sin 29, TQI = co9 a+ 

then the equations of characteristics of initial equations (1. I), (2.1) 

assume the foxm 

f+ -tan+ ~$2 5= 0, dp+cotgdz=O (2.3) 

whereby the characteristics coincide with the slip lines (the lines of 

maximum shear). 

Since 

tan+= 
V 

“l - co.3 2lJ.l 
1+ cos24J‘ 

then equations (2.3) may be rewritten in the form 

(24 

I. For such a case the simplest solution is credited to Hencky [ 6 3 , 
who originated an application of the condition of complete plasticity in 
the theory of ideal plasticity: 

cpz = 0, oP = (1 - r*i) ln p + Ci 

3, = (1 - pi) In p - 2~~ + C1 (2.5) 

Equations (2.2) for finding velocities of displacements assume the form 
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In such a case the characteristics appear as straight fines 

p + z = const 

It will be shown that solution (2.5) may not be applied to an invest- 

igation of the state of stress in thick-walled tubes for plane deformation. 

Insider an increment of work by stresses done in an increment of plastic 

deformation: 

dA = o,dsl + ozdsz + aads 

If the condition of complete plasticity u1 = u2 = a7 + 2 exists, then 

~54 = +_ Zdc,, and consequently the condition of complete plasticity, may 

be employed only when c3 f constant. Therefore the condition of complete 

plasticity should be expected to yield good results in cases when the 

state of stress differs substantially from the state of plane strain. 

II. Insider the solution analogous to that of Hill, presented in II 

of Section 1 above. 

Let 

y?P = p, u==--P 
Then .~- 

‘3P - ut = 2l4 j/Ll - p2, 3p -- co = ,ui Jcl - p* - : 

It is easy to find 
-. 

?P = - 22 - 1~~ 1/‘1 - p2 - In ‘+v;--P2]+tnp+C, 

Characteristic equations will be written in the form 

2 = - 1/l - p2 f2ta,-1 r/ 
&$- + collst 

z - - 1/l - ps - 2tan-1 
VT- 

;% f- ccmst 

III. Assume that 

1 1 
7 p.? = I’) u z 

P P 

It is easy to determine that in such a case the components of stress 

satisfying equations (1.11 and (2.11 will have the form 



950 D.D. Ivlev 

up = - IL1 [1/ 1 -dp(p+~-mj]+lnp+C, 
~. 

02 = 1'1 [1/i - + + 111 (p + l/p2 -I)] + ln p + Cl 

Further, one easily obtains 

w = - y.2 [r/l--$ - Wp+Vp4J+C2 
'lhe characteristic equations are 

z=t_v/p2 -l+ln(p+JLp2-l)+const 

IV. &e may obtain a solution which would generalize solutions developed 

in II and III of Section 2 above. Let 

T W - - qp + y-, U = n,p + $- W) 

then from plasticity condition (2.1) we obtain 

- 

Qp- ofI= Pl 
v ( 

l- 
nl.2 2 

wp+p -1 
) 

(2.7) 

Substituting expressions (2.6) and (2.7) into equations (l.l), we 

obtain 

Qz = - 2m,z - p1 
s 
l/p2 - (mlp2+ m2)2 +$ - !F l/p2 - (m1p2+ m212 + Cl 

It is also easy to find that 

w = - 2n,z + 
s 

au -3-p j-c, 
4J bp-~ 

lhe characteristic equations may be found in an analogous manner. 
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